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Abstract 

Background:  The rumen microbiome is critical for regulating milk synthesis in dairy 
livestock, yet the molecular mechanisms linking microbial functions to host lipid 
metabolism remain poorly understood. While host genetics and microbial composi-
tion have been studied, integrative analyses of the rumen-blood-mammary gland axis 
remain lacking.

Results:  Here, we present the goat rumen microbial reference gene catalog and 5514 
metagenome-assembled genomes (MAGs) from 160 multi-breed rumen samples. 
Integrating this resource with lactation data from 177 Saanen dairy goats, we iden-
tify Prevotella spp. as keystone taxa driving concurrent increases in milk yield and fat 
percentage. Functional and metabolomic profiling reveals that Prevotella bryantii B14 
synthesizes nicotinate, which is converted to nicotinamide in circulation. Using in vitro 
and in vivo models, we demonstrate that nicotinamide activates the mTORC1 pathway 
in mammary epithelial cells via GPR109A, which upregulates transcription factors SREBP 
and PPAR-γ and the downstream lipogenic genes FASN, ACCα, and SCD1 to promote 
milk fat synthesis. In contrast, the relative deficiency of P. bryantii B14 and the associ-
ated reduction in nicotinamide levels in the rumen of poor lactating dairy goats may 
represent a significant contributor to impaired lactation performance. Additionally, 
the enhanced hydrogenotrophic methanogenesis activity may also adversely affect 
their lactation phenotype.

Conclusions:  Our study establishes a causal link between rumen microbial metabo-
lism and mammary lipid synthesis mediated by nicotinamide-mTORC1 signaling 
and identifies Prevotella abundance as a biomarker for precision breeding. These find-
ings advance the understanding of microbiome-host crosstalk in lactation and provide 
actionable strategies for enhancing dairy productivity through microbiota-targeted 
interventions.
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Background
The global demand for dairy products continues to rise, presenting the livestock indus-
try with the dual challenges of improving production efficiency and achieving low-car-
bon outputs [1]. Among the determinants of dairy quality and economic value, milk fat 
content serves as a critical metric, directly influencing the nutritional profile and market 
returns of milk and its derivatives [2, 3]. Dairy goats represent an ideal model for eluci-
dating the mechanisms of milk fat synthesis, due to their high milk fat bioavailability [4] 
and more pronounced responsiveness of milk fat changes induced by exogenous nutri-
tional interventions through microbial mediation [5–7]. Additionally, goat milk, rich in 
short- and medium-chain fatty acids [8], is increasingly favored for producing infant for-
mula. Despite progress, research into the regulatory effects of genetic [9, 10], nutritional 
[11], and environmental factors [12] on milk yield and milk fat percentage remains lim-
ited. Milk production and fat synthesis are governed by complex, synergistic interactions 
among multiple metabolic organs [13], yet the core functional nodes and specific meta-
bolic regulatory mechanisms of the “rumen-blood-mammary gland” axis remain poorly 
understood [14]. Elucidating the multi-organ metabolic networks underlying high milk 
yield and high milk fat percentage phenotypes in dairy goats holds significant industrial 
relevance. Such insights could inform strategies to optimize dairy production systems, 
enhancing efficiency while supporting sustainable agricultural practices.

Current research on lactation performance in dairy livestock primarily focuses on 
individual lactation phenotypes, such as milk yield or milk fat synthesis [12, 15]. How-
ever, there is a lack of systematic and comprehensive understanding of the synergistic 
regulatory mechanisms between milk yield and milk fat percentage. This limitation hin-
ders a holistic insight into the complexity of the mammary gland metabolic network and 
its multidimensional regulatory processes. Additionally, the rumen, as the central hub of 
the host-feed metabolism network, plays a pivotal role in these processes [16]. Rumen 
microbiota ferment dietary substrates to produce key metabolites such as volatile fatty 
acids (VFAs) [17], which serve as critical carbon sources and precursor compounds for 
milk and milk fat synthesis [18–20]. Despite this central role, the intricate complex-
ity of the rumen metabolic network and the vast diversity of its microbial population 
pose substantial challenges in identifying core functional species [21]. Current research 
predominantly emphasizes macro-level correlations and predictive analyses of rumen 
microbial communities and their functions [4, 22, 23], with limited exploration of the 
direct causal relationships between specific microbes and milk fat synthesis. These gaps 
in knowledge hinder the development of robust theoretical frameworks and practical 
innovations for the precision regulation of dairy production performance.

To comprehensively investigate the key functional microbial species in the rumen 
associated with milk yield and milk fat synthesis, and to evaluate whether their metabo-
lites regulate the metabolic system of dairy livestock via the “rumen-blood-mammary 
gland” axis through activation of specific mammary gland signaling pathways [14], 
this study first establishes the most comprehensive goat rumen microbial gene catalog 
(GRMGC) and a database of metagenome-assembled genomes (MAGs). Using a dual-
factor control model that integrates high milk yield and high milk fat percentage, we 
systematically identify and analyze core functional nodes of the rumen microbiome 
within the host metabolic network. Our findings highlight the pivotal roles of specific 
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metabolic pathways and microbial functional modules in the “rumen-blood-mammary 
gland” axis [14], demonstrating their significant influence on the precursors and final 
synthesis of milk and milk fat. These processes are closely linked to the energy allocation 
mechanisms in dairy livestock. Through integrated in vivo and in vitro approaches, we 
confirm the metabolic contributions of a critical functional microbe, proposing a novel 
strategy for optimizing dairy livestock production performance via targeted microbial 
interventions. This study provides mechanistic insights into the molecular interplay 
between rumen metabolism and host milk fat synthesis, offering a theoretical founda-
tion for improving production efficiency and mitigating the environmental impact of 
dairy farming. These findings advance the development of rumen-focused strategies for 
sustainable dairy production and provide actionable guidance for the dairy industry.

Results
Construction of the goat rumen microbial reference gene catalog

We constructed the GRMGC using metagenomic sequencing data from 160 rumen 
digesta samples spanning 8 goat breeds across 6 provinces in China. This dataset 
included 123 newly collected samples and 37 samples from published studies [24–27] 
(Fig. 1A and Additional file 1: Table S1). After stringent quality control to remove exoge-
nous DNA contaminants, 3.03 Tb of high-quality sequencing reads were retained (Addi-
tional file 2: Fig. S1 and Additional file 3: Table S2). De novo assembly and open reading 

Fig. 1  Overview of the goat rumen microbial reference gene catalog (GRMGC). A This panel features a 
montage of the goat breeds described in this study. Red circles indicate newly collected rumen digesta 
samples, while green circles represent samples from previous studies obtained from the NCBI-SRA database. 
B Rarefaction analysis was performed using 100 random samplings without replacement to estimate the 
total number of NR predicted genes. Sample sizes ranged from 20 to 160, increasing by 20 samples per step. 
The mean values from 100 samplings for each sample size are plotted. C Alignment results of additional goat 
and sheep rumen metagenomic data with the GRMGC are shown. D The number (percentage) of shared 
bacterial taxa at the phylum (green), genus (pink), and species (yellow) levels across samples is depicted. The 
y-axis represents the percentage of shared items, while the x-axis shows the proportion of shared samples. 
Data for 20%, 50%, 90%, and 100% of the samples are highlighted. E The number and percentage of shared 
functional items in KEGG orthologs (orange), KEGG pathways (green), CAZy families (pink), and eggNOG 
orthology (yellow) are presented. Other legends are consistent with D 
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frame (ORF) prediction yielded 179.20 million contigs and 304.63 million ORFs, with 
26.62% being complete (Additional file 4: Table S3). Clustering at 95% average nucleotide 
identity (ANI) resulted in 73,875,589 nonredundant (NR) genes, with an average length 
of 686  bp (Additional file  5: Table  S4). Rarefaction analysis indicated that GRMGC 
captured the majority of microbial genes present in the goat rumen microbiome with 
saturation at approximately 80 samples (Fig.  1B). Comparative analyses revealed that 
minimal overlap of GRMGC with previously reported gene catalogs, including 14.2% 
with Xie et al. [26] and Li et al. [28] and only 4.19% with the rumen NR protein set by 
Stewart et al. [29] (Additional file 2: Fig. S2). Mapping of metagenomic reads from three 
independent goat [4, 30, 31] and two distinct sheep [32, 33] datasets demonstrated 
approximately 90% of quality-filtered reads were mapped (goats: 91.09%; sheep: 89.21%), 
highlighting unprecedented coverage by GRMGC (Fig. 1C). These results strongly sup-
port the necessity of constructing GRMGC, as there remains a vast reservoir of valuable 
microbial gene resources in the goat rumen microbiome awaiting discovery. Therefore, 
the construction of GRMGC will provide a crucial reference and baseline for further 
studies on the rumen microbiome of both goats and sheep.

Taxonomy and functional landscape of the goat rumen microbiome

To comprehensively characterize the taxonomic landscape of the goat rumen microbi-
ome, we translated the NR predicted genes from the GRMGC into protein sequences 
and aligned them against the NCBI-NR database (version: October 2022). Of these, 
85.13% successfully matched known proteins, while 14.87% remained unannotated as 
unknown proteins (Additional file  2: Fig. S3A). Among the NR predicted genes with 
assigned taxonomic information, 94.96% were classified as bacteria, 3.59% as archaea, 
and the remaining 1.05%, 0.39%, and 0.01% as viruses, fungi, and unclassified at the 
domain level, respectively (Additional file  2: Fig. S3B). At the phylum level, the NR 
predicted genes were predominantly annotated as Bacteroidota (47.87%), Firmicutes 
(37.64%), and Euryarchaeota (2.98%) (Additional file 2: Fig. S3C). Notably, a significant 
proportion of NR predicted genes (64.06%) lacked precise taxonomic assignment at the 
genus level. Among those successfully classified at the genus level, the majority were 
assigned to Prevotella (20.48%), Methanobrevibacter (2.81%), and Ruminococcus (2.03%) 
(Additional file 2: Fig. S3D). Furthermore, 181 phyla (representing 69.35% of all anno-
tated phyla), 2747 genera (33.81%), and 8252 species (16.99%) were detected in over 90% 
of samples, thereby constituting core rumen microbiota in goats (Fig. 1D). The cumula-
tive abundance of these core species accounted for more than 99.68% of the goat rumen 
microbiome composition. The dominant species with the highest relative abundance 
(TPM) included Prevotella sp., Bacteroidales bacterium, Clostridia bacterium, Oscillo-
spiraceae bacterium, and Lachnospiraceae bacterium (Additional file 2: Fig. S3E).

Functional annotation of the NR predicted genes within the GRMGC was performed 
using the KEGG, CAZy, and eggNOG databases. Only 49.44%, 32.12%, and 3.88% of 
the genes were annotated as clusters of orthologous groups of proteins (COGs), KEGG 
orthologous groups (KOs), and carbohydrate-active enzymes (CAZymes), respectively. 
This indicates that the GRMGC contains a substantial proportion of genes with uniden-
tified functions, representing a highly complex functional repertoire (Additional file 6: 
Table  S5). The predominant functional capacities of the rumen microbiome in goats, 
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based on the GRMGC, are listed in Additional file 7: Table S6. Importantly, core KOs 
(47.37%), KEGG pathways (95.53%), CAZy families (75.98%), and eggNOG orthologous 
groups (83.12%) present in over 90% of the samples were significantly more prevalent 
than the proportion of core species (16.99%) (Fig. 1D, E). This indicates that the exten-
sive presence of microbial species within the goat rumen microbiome exhibits functional 
redundancy, which may enhance the functional stability of the rumen microbiome and 
contribute to its resilience against external perturbations affecting rumen metabolic 
functions [34].

Phenotypic characteristics and taxonomic differences in HH and LL dairy goats

Building upon the successfully established GRMGC, we conducted an in-depth analy-
sis to elucidate the biomarker microbial taxa within the rumen of high milk yield and 
high milk fat percentage (HH) goats and their regulatory roles in milk yield and milk fat 
synthesis. A cohort of 177 mid-lactation Saanen dairy goats, maintained under identical 
environmental conditions, was subjected to longitudinal monitoring (Additional file 8: 
Table  S7). Ultimately, 10 HH and 10 low milk yield and low milk fat percentage (LL) 
dairy goats were selected for further analysis (see “Methods”; Fig.  2A and Additional 
file 8: Table S7). Comparative analyses of lactation phenotypes revealed that milk yield, 
milk fat percentage, milk fat yield (calculated as milk yield [kg/day] × milk fat [%]; MFY), 
and total solids were significantly elevated in the HH group compared to the LL group 
(P < 0.05, Fig.  2B, C, D, E), whereas milk protein percentage, milk lactose percentage, 
milk urea nitrogen concentration, and somatic cell count (SCC) did not differ signifi-
cantly between the groups (P > 0.05, Additional file 2: Fig. S4A, B, C, D). Notably, con-
centrations of glucose, a biomarker for milk production, and β-hydroxybutyrate (BHBA), 
a key precursor for milk fat synthesis, were significantly increased in the HH group 
(P < 0.05, Additional file 9: Table S8), suggesting alterations in rumen carbon metabolism 
between HH and LL groups. Further analysis of rumen fermentation parameters indi-
cated that as anticipated, the HH group exhibited significantly higher concentrations of 
total VFAs, acetate, propionate, butyrate, and valerate, alongside a reduced acetate/pro-
pionate ratio (A/P ratio) and lower pH levels (P < 0.05; Fig. 2F, G, H, I, J and Additional 
file 2: Fig. S4E, F). Conversely, concentrations of isobutyrate, isovalerate, and NH₃-N did 
not differ significantly between the two groups (P > 0.05; Additional file 2: Fig. S4G, H, I). 
These results suggest significant disparities in rumen fermentation profiles between HH 
and LL dairy goats.

We then identified the biomarker microbiota affecting lactation performance and 
rumen fermentation parameters in HH dairy goats based on the GRMGC. The HH 
group exhibited reduced microbial diversity in the rumen (P < 0.05; Additional file  2: 
Fig. S5) and significant segregation in microbial composition compared to the LL group 
(Bray–Curtis; PERMANOVA: R2 = 0.232, P = 0.004; Fig.  2K). This differentiation was 
characterized by a significantly higher relative abundance of bacteria and a significantly 
lower relative abundance of archaea in the HH group (P < 0.05; Fig.  2L), along with 
variations observed at the phylum level (Additional file 2: Fig. S6). Notably, the relative 
abundances of Prevotella and Bacteroides were significantly elevated in the HH group 
(P < 0.05; Fig.  2M), whereas those of Candidatus Methanomethylophilus, Methano-
sarcina, and Pyrococcus were significantly reduced (P < 0.05; Fig.  2M). The differential 
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Fig. 2  Differences in lactation phenotypes, rumen fermentation parameters, and microbial composition 
between HH and LL dairy goats. A HH and LL dairy goats (n = 10/group) were selected from a cohort of 
177 based on average milk yield and milk fat percentage (± 0.5 SD). Analysis of differences in lactation 
phenotypes, including milk yield (B), milk fat percentage (C), milk fat yield (MFY) (D), and total solids in milk 
(E) between HH and LL goats (n = 10/group). Statistical significance was determined using Student’s t-test. 
***P < 0.001. Differences in rumen fermentation parameters, including total VFAs (F), acetate (G), propionate 
(H), butyrate (I), and the acetate/propionate ratio (A/P) (J), were analyzed between HH and LL goats (n = 10/
group). Statistical significance was determined using Student’s t-test. *P < 0.05 and **P < 0.01. K Visualization 
of rumen microbiota profiles in HH and LL goats based on PCoA. Evaluation of Bray–Curtis dissimilarity using 
PERMANOVA (n = 10/group). L The Wilcoxon rank-sum test was used to identify significant differences in the 
relative abundance of bacterial and archaeal domains (L) and genera (M) between HH and LL dairy goats. 
Multiple testing correction using the Benjamini–Hochberg procedure (n = 10/group). *P < 0.05, **P < 0.01, and 
***P < 0.001. N LEfSe analysis identified differential bacterial species between HH and LL groups, with linear 
discriminant analysis (LDA) scores indicating significant enrichment for taxa (P < 0.05, |LDA|> 2), treating all 
samples as independent (n = 10/group). O Spearman correlation analysis (P < 0.05, |R|> 0.5) examining the 
relationship between differentially enriched bacterial species and key phenotypes in HH and LL dairy goats 
(n = 10/group). *P < 0.05, **P < 0.01, and ***P < 0.001. Data involving error bars are presented as mean ± SEM. 
Abbreviation: C., Candidate
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abundance of Prevotella between the two groups was further validated using absolute 
quantification (P < 0.05; Additional file 2: Fig. S7). Given the extensive diversity within 
the genus Prevotella, we further delineated differences at the species level, identifying 
Prevotella ruminicola, Prevotella bryantii, Prevotella brevis, Prevotella copri, and 10 
unclassified Prevotella spp. as biomarker microbes in the HH group (LDA > 2, P < 0.05; 
Fig. 2N). Conversely, Methanobrevibacter woesei was identified as the biomarker archaea 
(LDA > 2, P < 0.05; Additional file  2: Fig. S8). To investigate the relationship between 
Prevotella spp. and lactation phenotypes, we conducted the Spearman correlation analy-
sis and found the significantly positive correlations between P. ruminicola, P. bryantii, P. 
brevis, P. copri and milk yield, milk fat percentage, and MFY (|R|> 0.5, P < 0.05; Fig. 2O). 
These results suggest that Prevotella may serve as a key member of the rumen micro-
biota, potentially playing a pivotal role in enhancing milk yield and milk fat synthesis.

Differential microbial functional and metabolic profiles in HH and LL dairy goats

To preliminarily elucidate the differential metabolic cascades of the rumen micro-
biome in HH and LL dairy goats, functional annotation of the acquired microbial 
gene data was performed using the KEGG database. PCoA analysis based on KOs 
and KEGG module revealed that the HH and LL groups possessed significantly 
distinct functional metabolic profiles (Bray–Curtis; PERMANOVA KO: P = 0.036, 
R2 = 0.149; PERMANOVA module: P = 0.041, R2 = 0.124; Additional file 2: Fig. S9A, 
B). LEfSe analysis identified significant level 3 pathways enriched in the HH group, 
primarily involving alanine, aspartate, and glutamate metabolism (ko00250), propi-
onate metabolism (ko00640), and nitrogen metabolism (ko00910) (LDA > 2, P < 0.05; 
Fig.  3A). At the KEGG module level, particular emphasis was placed on nicoti-
nate and nicotinamide metabolism (ko00760), pantothenate and CoA biosynthesis 
(ko00770), and thiamine metabolism (ko00730). Downstream of these pathways, 
modules M00115 (converting aspartate to NAD⁺), M00119 (converting valine/aspar-
tate to pantothenate), M00120 (converting pantothenate to CoA), M00896 (convert-
ing AIR + [NAD⁺] to TPP/TMP), and M00895 (converting AIR + [DXP/glycine] to 
TPP/TMP) were significantly enriched in the rumen of HH dairy goats, whereas 
modules M00563 (converting methylamine/dimethylamine/trimethylamine to meth-
ane) and M00345 (ribulose monophosphate pathway) under methane metabolism 
were significantly enriched in the rumen of LL dairy goats (LDA > 2, P < 0.05; Addi-
tional file  2: Fig. S10). Furthermore, non-targeted metabolomics revealed signifi-
cant distinctions in the metabolite composition between the HH and LL dairy goats 
(Bray–Curtis; PERMANOVA: P = 0.002, R2 = 0.155; Additional file  2: Fig. S9C). 
The differential metabolites were primarily involved in nicotinate and nicotinamide 
metabolism (ko00760), tyrosine metabolism (ko00350), and butanoate metabolism 
(ko00650) (P < 0.05, Rich factor > 0.5; Additional file 2: Fig. S11).

To thoroughly elucidate the differential metabolic functional characteristics of 
the rumen microbiota in HH and LL dairy goats, we integrated differential enzyme 
genes and metabolites and constructed schematic diagrams of rumen metabolism 
between the two groups (Fig. 3B and Additional file 2: Fig. S12). Specifically, we iden-
tified that the key enzyme genes acdAB, pflD, pduL, and ackA, which were involved 
in the conversion of acetyl-CoA and propanoyl-CoA to acetate and propionate, were 
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Fig. 3  Differential metabolic profiles of rumen microbiota in HH and LL dairy goats. A LEfSe analysis 
identified differentially enriched level 3 metabolic pathways in HH and LL dairy goats (n = 10/group). 
Significance was determined at P < 0.05 and |LDA|> 2. B Overview of rumen microbiota metabolic pathways. 
Metabolites are depicted as circles: undetected (orange), detected with no significant difference (blue), 
significantly increased in HH (green), and significantly increased in LL (pink). Enzyme genes are shown in 
gray dashed boxes (no significant difference), green solid boxes (upregulated in HH), and pink solid boxes 
(upregulated in LL). VFAs and B vitamins are highlighted with pink and brown backgrounds, respectively. 
Differences were tested using the Wilcoxon rank-sum test and Student’s t-test. C Key metabolites 
with significant differences, including propionate, butyrate, nicotinate, pantothenol, and thiamine 
(n = 10/group). Statistical significance was determined using Student’s t-test. *P < 0.05 and **P < 0.01. 
D Genus-level phylogenetic distribution of VFAs (acetate, propionate, butyrate), B vitamins (nicotinate, 
thiamine, pantothenol), and methane metabolism-related enzyme genes. Data involving error bars are 
presented as mean ± SEM. Abbreviations: Ala, alanine; asp, aspartate; glu, glutamate; GAP, glyceraldehyde 
3P; 3PG, glycerate-3P; 2PG, glycerate-2P; PEP, phosphoenolpyruvate; Pro-P, propanoyl phosphate; GABA, 
4-aminobutanoate; L-Glu, L-glutamine; ASP, L-aspartate; R-2,3-DHMB, (R)−2,3-dihydroxy-3-methylbutanoate; 
α-KIV, alpha-ketoisovalerate; NaAD, nicotinate D-ribonucleotide; C., candidate
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significantly upregulated in the HH group, resulting in higher concentrations of ace-
tate and propionate in the rumen of HH dairy goats (P < 0.05; Figs.  2G, 3B, C  and 
Additional file  2: Fig. S12). Additionally, the primary pathway for butyrate biosyn-
thesis (converting acetyl-CoA to butyrate) in the HH group involved the key enzyme 
gene ptb, and the alternative butyrate synthesis pathway (converting L-glutamate to 
butyrate) involved the key enzyme genes gltB and gbd, which were also expressed at 
higher levels in the HH group. This further led to a significant increase in butyrate 
concentration in the rumen of HH dairy goats (P < 0.05; Fig.  3B, C  and Additional 
file 2: Fig. S12). Importantly, we observed elevated concentrations of thiamine, pan-
tothenol, and nicotinate in the rumens of HH dairy goats (P < 0.05; Fig. 3C). Corre-
spondingly, the relative abundances of the key enzyme genes involved in thiamine 
biosynthesis (thiD and thiE), pantothenol biosynthesis (ilvH, ilvC, panB, panE, and 
panD), and nicotinate biosynthesis (nadB, nadA, and nadC) increased in the HH 
dairy goats (P < 0.05; Fig. 3B and Additional file 2: Fig. S12). In contrast, compared to 
the HH dairy goats, the relative abundances of key enzyme genes involved in methane 
metabolism, including cdhE, fwdA, ftr, mer, and mtrA, were significantly higher in the 
LL group (P < 0.05; Fig. 3B and Additional file 2: Fig. S12A). To elucidate the source 
of these key enzyme genes, we examined their taxonomic distribution and found that 
the enzyme genes encoding the synthesis of three VFAs and three B vitamins were 
primarily annotated to Prevotella, while Methanobrevibacter was the main contrib-
utor to methane metabolism in the goat rumen (Fig.  3D). Thus, Prevotella may be 
a critical biomarker responsible for the elevated concentrations of three VFAs and 
three B vitamins in the rumen of HH dairy goats. Given that propionate, acetate, 
and butyrate are widely recognized as important metabolites influencing milk yield 
and milk fat percentage in dairy livestock [18–20], our subsequent studies focused 
primarily on a detailed analysis of the underlying causes of the suboptimal lactation 
phenotype in LL dairy goats and explored the contribution of Prevotella to the bio-
synthesis of nicotinate, thiamine, and pantothenol in the rumen.

Active hydrogen and methane metabolism in the rumen contribute to decreased lactation 

performance in LL dairy goats

Hydrogen, a natural byproduct of anaerobic fermentation in the rumen, is utilized 
by methanogenic archaea to produce methane, which is a key factor contributing 
to reduced energy efficiency and influencing lactation phenotypes in dairy livestock 
[35]. To comprehensively investigate the underlying causes of suboptimal lactation 
performance in LL dairy goats, we reconstructed 5514 MAGs meeting medium- 
or high-quality standards from deep metagenomic sequencing data of 160 rumen 
digesta samples using genomic binning techniques (Additional file  10: Table  S9 
and Additional file  11: Table  S10). These MAGs were subsequently annotated 
using the hydDB database (Additional file  12: Table  S11). Detailed information on 
the MAGs and hydrogenase profiles of the goat rumen microbiome can be found 
in the Additional file  2: Supplementary Results. Subsequently, using the Wilcoxon 
rank-sum test, we identified MAGs that were significantly upregulated in the HH 
and LL groups, respectively (P < 0.05; Additional file 13: Table S12). Upon comparing 
the H2-producing fermentative hydrogenase (groups A1, A2, B FeFe-hydrogenases) 
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and H2-producing electron bifurcating hydrogenase (group A3 FeFe-hydrogenases) 
predicted protein counts encoded by these significantly different MAGs [36], we 
found that the LL group had 1.63-fold more H₂-producing fermentative hydrogenase 
encoded by upregulated MAGs compared to the HH (951 vs. 585). Additionally, the 
LL possessed 2.53-fold more H₂-producing bifurcating hydrogenases than HH dairy 
goats (229 vs. 118) (P < 0.05; Fig. 4A). These results suggest that the rumen microbi-
ome in the LL dairy goats possesses a more potent capacity for H₂ production. Fur-
thermore, methanogenic hydrogenases (group 3a, 3c, 4 h, and 4i NiFe-hydrogenases, 
and Fe-hydrogenase) encoded by hydrogenotrophic methanogenic archaea facilitate 
the utilization of H₂ through the Wolfe cycle to promote methane synthesis [36]. 
Notably, five MAGs with significantly higher expression in the LL group exhibited 
elevated levels of these hydrogenases, with four identified as Methanobacteria. Con-
versely, MAGs with significant upregulation in the HH group seldom encoded these 
hydrogenases (P < 0.05; Fig. 4A). Further analysis of the ability of differentially upreg-
ulated MAGs to encode key enzyme genes involved in methane metabolism revealed 
that MAGs upregulated in the LL group could encode multiple key enzymatic steps 
in methane metabolism, whereas MAGs upregulated in the HH group largely lacked 

Fig. 4  Phylogenetic tree of H2-producing hydrogenases and methane metabolism overview constructed 
from differential MAGs in HH and LL dairy goats. A Phylogenetic tree of H2-producing hydrogenases 
constructed from MAGs differentially enriched in HH and LL groups. The upper semicircle represents MAGs 
significantly enriched in HH, while the lower semicircle represents those in LL. Differences were tested using 
the Wilcoxon rank-sum test, with significance at P < 0.05. Leaf nodes are colored according to class-level 
taxonomy. The inner and middle bar charts display predicted protein counts for H2-producing fermentative 
hydrogenases (groups A1, A2, B FeFe-hydrogenases) and H2-producing electron-bifurcating hydrogenases 
(group A3 FeFe-hydrogenases), respectively. The outer bar chart shows predicted protein counts for 
methanogenic hydrogenases. B Overview of methane metabolism constructed from MAGs with significant 
relative abundance (TPM) differences between HH and LL groups, tested using the Wilcoxon rank-sum test 
with a threshold of P < 0.05. Bar colors are based on class-level taxonomy of MAGs. Intermediate metabolites 
are highlighted with a yellow background, while the end product, methane, is highlighted with a blue 
background
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the capability to encode these critical enzyme genes (P < 0.05; Fig. 4B). These find-
ings robustly confirm that the rumen microbiome of the LL group enhances H₂ 
production and possesses a more formidable capacity to utilize H₂ for methane syn-
thesis. This inefficient energy allocation pattern may ultimately contribute to the 
suboptimal lactation phenotype observed in the LL dairy goats.

Prevotella is the potent independent synthesizer of thiamine, pantothenol, and nicotinate 

in the rumen

To further validate the role of Prevotella in the biosynthesis of nicotinate, thiamine, and 
pantothenol within the rumen of dairy goats, ORFs from 5514 MAGs were translated 
into protein sequences and annotated with the KEGG database. We first characterized 
the unique biosynthetic pathways for nicotinate, thiamine, and pantothenol encoded by 
the goat rumen microbiome. Our analysis revealed that the rumen microbiome of dairy 
goats possesses a complete nicotinate biosynthetic capability. A substantial number of 
microbial-encoded enzyme genes support the biosynthesis pathways of nicotinate and 
nicotinamide (NAM) using L-aspartate as a precursor, and further biosynthesis of the 

Fig. 5  Prevotella as a core genus in nicotinate and pantothenol biosynthesis within the goat rumen. 
Nicotinate (A) and pantothenol (B) biosynthesis pathways encoded by the goat rumen microbiome are 
illustrated. Cyan and orange circles represent metabolic precursors and intermediates, respectively, while 
pink and green circles denote target B vitamins and their functional coenzymes. Enzyme genes required for 
each pathway reaction are marked in orange boxes, with corresponding gene counts shown in overlapping 
hollow boxes. The bubble plots depict enzyme gene counts involved in nicotinate (C) and pantothenol (D) 
biosynthesis pathways across MAGs from different genera. Bubble size indicates enzyme gene counts, and 
color represents different genera. Only the top 10 genera with the most enzyme genes for nicotinate or 
pantothenol biosynthesis are shown. The left heatmap displays genus relative abundance (TPM) based on 
integrated MAGs. E Analysis of premium Prevotella MAGs with significant differences in thiamine, nicotinate, 
and pantothenol synthesis capabilities between HH and LL dairy goats. Premium Prevotella MAGs are defined 
as having completeness > 80% and contamination < 10%. Statistical significance was tested using the 
Wilcoxon rank-sum test (P < 0.05). The phylogenetic tree on the left illustrates the relationships of Prevotella 
MAGs, with leaf nodes colored by species. The middle binary heatmap indicates whether MAGs possess all 
enzyme genes for synthesizing the corresponding B vitamins. The lollipop chart shows Prevotella MAGs with 
significantly increased relative abundance (TPM) in HH or LL, based on log2(FC)
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functional coenzyme form NAD⁺ is facilitated by the enzyme genes nadD and nadE 
(Fig.  5A). Additionally, seven thiamine biosynthetic precursors are primarily charac-
terized in the KEGG database. However, due to the absence of the key enzyme genes 
tenI and thi4, the thiamine synthesis pathway mediated by the rumen microbiome of 
dairy goats utilizes aminoimidazole ribotide as the precursor. Intermediate metabolites 
are converted into thiamine through the catalysis of thiC, thiD, thiE, phoA, and rsgA 
and subsequently transformed into the essential coenzyme thiamine diphosphate via 
thiN (Additional file 2: Fig. S13A). Upon examining the KOs associated with pantoth-
enol biosynthesis in the goat rumen, we identified L-valine, pyruvate, and L-aspartate as 
the primary precursor substrates for pantothenol biosynthesis. In contrast, Uracil may 
exhibit reduced conversion efficiency due to the scarcity of UPB1. These three substrates 
undergo sequential catalysis by multiple enzyme genes and are ultimately synthesized 
into pantothenol under the influence of the central enzyme gene panC. Pantothenol is 
further converted into its active coenzyme by coaX, coaBC, coaD, and coaE (Fig.  5B). 
These results revealed the unique biosynthetic pathways for nicotinate, thiamine, and 
pantothenol encoded by the goat rumen microbiome, which serve as a critical founda-
tion for subsequent analyses of the contribution of Prevotella to the synthesis of these 
three vitamins.

We then assessed the capability of MAGs from various genera in the rumen micro-
biome to synthesize these three B vitamins. Regarding nicotinate biosynthesis, 
among the top 10 genera in the goat rumen encoding the highest nicotinate synthase 
enzyme genes, Prevotella was the sole genus encompassing a complete nicotinate 
biosynthetic pathway and encoding the majority of key enzyme genes involved in 
nicotinate biosynthesis, thereby making it the primary nicotinate synthesizer within 
the rumen microbiome of dairy goats (Fig.  5C). Furthermore, MAGs annotated as 
Cryptobacteroides encoded the highest thiamine biosynthesis-related enzyme gene 
counts, followed by MAGs annotated as Quinella. However, Cryptobacteroides lacks 
thiC in the critical steps of thiamine biosynthesis, which may necessitate reliance 
on enzyme genes encoded by other microbes for thiamine biosynthesis. Although 
MAGs annotated as Prevotella encoded the third highest thiamine biosynthesis-
related enzyme gene counts across all genera, they did not exhibit any absences of 
key enzyme genes (Additional file 2: Fig. S13B). Similarly, MAGs identified as Prevo-
tella possessed complete pathways for pantothenol and CoA biosynthesis and con-
tained the highest enzyme gene counts (Fig. 5D).

We then screened 392 MAGs annotated as Prevotella and clustered these MAGs 
together with all Prevotella genomes from the NCBI-RefSeq and NCBI-GenBank 
databases into species-level genome bins (SGBs) using a 95% ANI. The Prevotella 
SGBs obtained in this study expanded the phylogenetic relationships of Prevo-
tella species by 15.91% (Additional file 2: Fig. S14). To identify the functional dif-
ferences in the synthesis of thiamine, nicotinate, and pantothenol among highly 
abundant Prevotella MAGs in the rumen of HH and LL dairy goats, we selected 
premium Prevotella MAGs (defined as completeness > 80%, contamination < 10%) 
and utilized the MetaWrap “quant_bins” module to calculate the relative abun-
dance (TPM) of these MAGs in HH and LL groups [37, 38]. We found 38 MAGs 
with significant differences between the two groups (Wilcoxon rank-sum test), 
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of which 37 MAGs had significantly higher relative abundance in the HH group 
(P < 0.05; Additional file  14: Table  S13). Among the 37 MAGs, only one unclassi-
fied Prevotella MAG lacked the ability to synthesize all three B vitamins. In addi-
tion, 40.54% (15/37) of these MAGs could independently synthesize one B vitamin, 
48.65% (18/37) could synthesize two B vitamins, and three MAGs encoded all 
enzyme genes required for the synthesis of thiamine, nicotinate, and pantothenol. 
Notably, MAG4742 (P. bryantii) and MAG4414 (P. ruminicola) were capable of 
independently synthesizing thiamine, nicotinate, and pantothenol. Additionally, 
only MAG188, annotated as Prevotella sp900318885, was significantly upregulated 
in the LL group; however, this MAG did not independently encode the synthesis 
pathways for the aforementioned three B vitamins (Fig.  5E). These findings sub-
stantiate that Prevotella is an indispensable functional genus for the biosynthesis 
of nicotinate, thiamine, and pantothenol in the rumen of dairy goats and suggest 
the need for further investigation into the impact of these endogenous B vitamins 
on the lactation biology of dairy goats.

P. bryantii B14 synthesizes nicotinate to activate mTORC1 via a GPR109A‑dependent 

manner in the mammary gland

To elucidate the regulatory role of Prevotella spp. in dairy goat lactation, we 
enriched and cultivated the rumen-derived P. bryantii B14 (PB14). Since Prevo-
tella is not the predominant contributor to thiamine biosynthetic enzymes and 
pantothenol/pantothenate interconversion occurs rapidly in the rumen, nico-
tinate was selected as the target metabolite for functional validation [39]. The 
whole-genome KEGG annotation of PB14 confirmed that it encodes a complete 
nicotinate biosynthesis pathway capable of converting L-aspartate to nicotinate 
(Fig.  6A). Growth kinetics identified early exponential (8  h), mid-exponential 
(11  h), and stationary (15  h) phases (Additional file  2: Fig. S15). We inoculated 
medium 159 (M159) with 1 × 10⁸ CFU/mL PB14 (PB) or heat-inactivated PB14 
(DPB). After 24  h, the PB group showed a significant reduction in L-aspartate 
and an increase in nicotinate compared to DPB (P < 0.05; Fig. 6B, C), confirming 
PB14’s ability to synthesize nicotinate from L-aspartate. To assess the impact of 
PB14 on methane production, we introduced PB14 into an artificial rumen fer-
mentation system (Fig. 6D). After setting up the system, we added 1 × 10⁸ CFU/
mL of PB14 (PB) or filtered, sterilized culture supernatant (SN). Inoculation with 
PB14 significantly reduced gas and methane production and markedly decreased 
the copy numbers of methanogenic archaea compared to the SN group (P < 0.05; 
Fig. 6E, F, G).

Subsequently, to validate the effects of PB14 on rumen fermentation and lac-
tation performance in  vivo, we administered a daily dose of 1 × 1011  CFU/L of 
PB14 to late-lactation dairy goats (Fig. 6H). Maintaining consistent average feed 
intake (Additional file  2: Fig. S16), PB14 administration mitigated the decline in 
average milk yield during the late lactation period (average decline 0.115  kg vs. 
average decline 0.036 kg) (Fig. 6I) and significantly enhanced milk fat percentage 
(P < 0.05; Fig. 6J). Further absolute quantification confirmed a significant increase 
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in PB14 copy numbers in the rumen of the PB group (P < 0.01; Additional file  2: 
Fig. S17A). Additionally, concentrations of total VFAs, acetate, propionate, and 
valerate were significantly elevated in the PB group (P < 0.05; Additional file  2: 
Fig. S18). Consistent with in  vitro findings, PB14 colonization in the rumen of 
dairy goats facilitated nicotinate synthesis (P < 0.05; Additional file  2: Fig. S19) 
and significantly reduced the copy numbers of methanogenic archaea (P < 0.05; 
Additional file 2: Fig. S17B). These results suggest that PB14 is a stable colonizer 
and efficient producer of nicotinate in the rumen, contributing to improved lacta-
tion performance in dairy goats.

To elucidate the molecular mechanisms by which PB14-mediated increases in nicoti-
nate levels regulate milk fat synthesis in the mammary gland, we quantified the serum 
concentration of NAM, the circulating form of nicotinate, in HH and LL dairy goats [40]. 
The results demonstrated that the concentration of NAM in the HH group was signifi-
cantly higher than that in the LL group (P < 0.01; Fig. 6K). Moreover, the selected NAM 
concentrations did not affect bovine mammary epithelial cells (MAC-T) proliferation 
(Additional file 2: Fig. S20), while 0.5-mM NAM treatment significantly increased the 
expression of lipogenic genes ACCα, SREBP, FASN, PPAR-γ, and SCD1 (P < 0.05; Fig. 6L). 
To further explore the critical signaling pathways through which NAM influences milk 

(See figure on next page.)
Fig. 6  P. bryantii B14 synthesizes nicotinate to activate mTORC1 and enhance milk fat synthesis. A 
Morphology and whole-genome map of P. bryantii B14. The left panel shows the morphological features of 
P. bryantii B14 at 6000 × and 20,000 × magnification. The right genome circle map displays the size of the P. 
bryantii B14 genome in Mb in the innermost ring. The second ring (gray) shows the GC percentage of the P. 
bryantii B14 genome. The third ring uses red and blue to indicate positive and negative GC skew, respectively. 
The outermost ring highlights the coding sequences in green. Quantification of L-aspartate (B) and nicotinate 
(C) in the culture medium 24 h after inoculation of the culture tubes with P. bryantii B14 (PB) and heat-killed 
P. bryantii B14 (DPB), respectively (n = 3/group). Statistical significance was determined using Student’s t-test. 
*P < 0.05. D Schematic of the in vitro simulated rumen system. Briefly, anaerobic gas collection bags are 
used to collect gases produced by anaerobic fermentation. The gas volume is measured using a syringe, 
and gas composition is determined by gas chromatography; anaerobic fermentation lasts for 24 h. Gas 
production (E), CH4 production (F), and methanogenic archaea copy numbers (G) after 24 h of anaerobic 
fermentation in bottles inoculated with P. bryantii B14 culture supernatant (sterilization using a 0.22-µm filter 
membrane; SN) or active P. bryantii B14 (PB) (n = 3/group). Statistical significance was determined using 
Student’s t-test. *P < 0.05 and **P < 0.01. H Late-lactating dairy goats (n = 5/group) were grouped based on 
the presence (PB) or absence (CON) of P. bryantii B14 treatment. The entire experimental period spanned 
17 days, comprising a 7-day adaptation phase followed by a 10-day treatment phase. I Changes in average 
milk yield of goats during the adaptation and treatment periods. Goats not treated with P. bryantii B14 
(CON) showed a decrease in average milk yield of 0.115 kg from the adaptation to the treatment period, 
whereas P. bryantii B14 treatment (PB) reduced this decrease to 0.036 kg (n = 5/group). J Analysis of milk fat 
percentage in goats on the last day of the adaptation period (7 days) and on the fifth (12 days) and tenth 
(17 days) days of the treatment period (n = 5/group). Statistical significance was determined using Student’s 
t-test. *P < 0.05 and **P < 0.01. K Analysis of nicotinamide (NAM) content in the serum of HH and LL dairy 
goats (HH: n = 9, LL: n = 7). Statistical significance was determined using Student’s t-test. **P < 0.01. L Effect of 
NAM treatment at varying concentrations on lipid synthesis expression in bovine mammary epithelial cells 
(MAC-T) (n = 3/group). Statistical significance was determined using one-way ANOVA, followed by LSD test. 
*P < 0.05, **P < 0.01, and ***P < 0.001. M Western blot analysis of p-T389-S6K and p-S6 expression levels in 
MAC-T following gradient NAM treatment. N Effect of NAM on the expression of lipid synthesis genes ACCα, 
SREBP, FASN, PPAR-γ, and SCD1 in MAC-T following mTORC1 inhibition, assessed using qRT-PCR (n = 3/group). 
The significance of the differences was tested using Student’s t-test. *P < 0.05 and **P < 0.01. O Western blot 
analysis showing the impact of gradient NAM concentrations on p-T389-S6K and p-S6 expression levels after 
siGPR109A. P Effect of NAM on the expression of lipid synthesis genes ACCα, SREBP, FASN, PPAR-γ, and SCD1 
following siGPR109A was assessed using qRT-PCR (n = 3/group). The significance of the differences was 
tested using Student’s t-test. *P < 0.05, **P < 0.01, and ***P < 0.001
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fat synthesis, we assessed the activation states of mechanistic target of rapamycin com-
plex 1 (mTORC1), ERK, AMPK, and MAPK after treating MAC-T with gradient concen-
trations of NAM. We observed that NAM treatment at 0.5 mM significantly increased 
the protein expression levels of pT389-S6K and p-S6 in MAC-T, indicating the activa-
tion of mTORC1 (Fig. 6M and Additional file 2: Fig. S21). Inhibition of mTORC1 using 
Torin1 abrogated the regulatory effects of NAM on the downstream target genes ACCα, 
SREBP, FASN, PPAR-γ, and SCD1 (Fig.  6N), thereby confirming that NAM enhances 
lipid synthesis in the mammary gland through an mTORC1-dependent pathway. Previ-
ous studies have identified the GPR109A as the receptor for nicotinate [41]. Therefore, 
we employed specific siRNA to knock down the expression of GPR109A in MAC-T 
(P < 0.01; Fig.  6O and Additional file  2: Fig. S22) and observed that NAM ceased to 
regulate the levels of pT389-S6K and p-S6 or the expression of the lipid synthesis genes 
ACCα, SREBP, FASN, PPAR-γ, and SCD1 (Fig. 6P). To investigate the potential signaling 
connection between GPR109A and mTORC1 residing in distinct cellular compartments, 
we employed the selective PKA inhibitor H89. In the context of GPR109A knockdown, 
H89 partially restored NAM-induced mTORC1 activity, suggesting that PKA inhibition 

Fig. 6  (See legend on previous page.)
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is a key downstream regulatory event in NAM–GPR109A-mediated mTORC1 activa-
tion (Additional file 2: Fig. S23). In summary, our studies confirmed that NAM activates 
mTORC1 in a GPR109A-dependent manner and enhances milk fat synthesis by promot-
ing the expression of downstream lipid synthesis-related genes.

Discussion
Enhancing milk yield and quality in dairy livestock is paramount for mitigating dairy 
product shortages and alleviating the environmental pressures associated with their 
growing populations [1]. A meticulous analysis of the microbial composition and func-
tional attributes of the rumen in dairy livestock exhibiting varying lactation perfor-
mances is invaluable for selective breeding and the formulation of precise nutritional 
strategies. In this study, we performed deep metagenomic sequencing on a cohort of 
160 goats differing in breed, age, sex, habitat, and feeding regimes. This extensive analy-
sis facilitated the creation of the most comprehensive goat rumen microbial reference 
gene catalog (GRMGC) and MAG database to date, substantially advancing our sys-
tematic understanding of the goat rumen microbial ecosystem [42]. Furthermore, our 
study systematically elucidated the critical role of the core rumen genus Prevotella in the 
biosynthesis of thiamine, nicotinate, and pantothenol. We also found that the relative 
deficiency of the PB14 and its associated reduction in NAM biosynthesis in LL individu-
als may represent a major contributor to impaired lactation performance. In addition, 
we observed an enhancement of hydrogenotrophic methanogenesis pathways in the 
rumen microbiome of LL individuals, which may be related to alterations in the rumen 
metabolic environment. However, the direct contribution of this shift to the decline in 
lactation performance remains to be further investigated. To establish a causal relation-
ship between the rumen-blood-mammary gland axis and the augmentation of milk fat 
synthesis in dairy livestock, we employed multiple in  vivo and in  vitro models. These 
models revealed that the core rumen strain PB14 utilizes L-aspartate as a precursor to 
synthesize nicotinate. In the mammary gland, nicotinate, in its active form NAM, acti-
vates the mTORC1 signaling pathway in a GPR109A-dependent manner. This activation 
leads to the upregulation of the transcription factors SREBP and PPAR-γ, subsequently 
enhancing the expression of lipid synthesis-related genes SCD1, FASN, and ACCα, 
thereby promoting milk fat synthesis [43] (Fig. 7). In summary, this study underscores 
the significance of the rumen-blood-mammary gland axis as a framework for investi-
gating lactation performance in ruminants and provides essential strains and theoretical 
foundations for the selective breeding of high-quality dairy livestock.

A distinguishing aspect of this study is the integration of diverse goat rumen samples 
from various regions, coupled with the construction of the GRMGC and goat rumen 
MAGs databases through deep metagenomic sequencing. These data resources revealed 
that the goat rumen microbiome remains largely unexplored, with 14.87% of NR pre-
dicted proteins remaining uncharacterized and over 50% of the phylogenetic relation-
ships among microbial species yet to be elucidated. Furthermore, building upon prior 
rumen NR gene and protein catalogs [26, 28, 29], our study delivers the most compre-
hensive dataset to date. Although differences in assembly strategies may affect gene 
prediction, the sequence identity and coverage thresholds applied during redundancy 
filtering help to minimize these potential biases. Notably, the GRMGC generated in this 
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study, together with the gastrointestinal microbial gene catalog reported by Xie et  al. 
[26], includes a broader range of host genetic backgrounds and encompasses a wider 
spectrum of dietary types and environmental niches. This broader representation results 
in a more complete and functionally relevant microbial gene resource. These findings 
underscore the importance of future studies aimed at systematically developing species-
specific microbial gene catalogs for different gastrointestinal compartments in rumi-
nants, under diverse host, dietary, and ecological conditions.

In parallel, we characterized the composition and functional features of the core 
rumen microbiota in HH dairy goats, revealing patterns partially consistent with pre-
vious studies [4, 22, 23]. However, to our knowledge, other associations have not yet 
been causally validated using in vivo and in vitro models. We identified a functional 
microbial community (FMC) centered around Prevotella spp. in the goat rumen. The 
FMC is highly enriched in HH dairy goats, and the representative strain PB14 has 
demonstrated significant biological roles in promoting nicotinate biosynthesis and 
inhibiting methane production. Importantly, FMC was also identified as a biomarker 
in the rumen of dairy cows with high milk yield and high milk protein percentage 
in previous studies, where it was considered to regulate milk protein percentage 
by modulating host amino acid metabolism [22]. Moreover, in a research cohort of 
304 dairy cows, FMC was identified as a highly heritable microbiota and showed a 

Fig. 7  Distinct rumen microbial metabolic functions in HH and LL dairy goats lead to contrasting lactation 
phenotypes. This scheme illustrates that the enrichment of Prevotella spp. in the rumen of HH dairy goats 
leads to increased levels of propionate, acetate, butyrate, and nicotinate. These metabolites are converted in 
the liver and enter mammary epithelial cells as glucose, acetate, BHBA, and NAM, respectively. Glucose serves 
as a precursor for lactose synthesis, influencing milk yield, while acetate and BHBA affect de novo milk fat 
synthesis pathways. Specifically, the active form of nicotinate, NAM, activates the mTORC1 signaling pathway 
via GPR109A, upregulating transcription factors SREBP and PPAR-γ, thereby promoting the expression of 
lipid synthesis-related genes SCD1, FASN, and ACCα, ultimately enhancing milk fat synthesis. Conversely, 
the relative scarcity of P. bryantii B14 and the consequent decrease in NAM levels in the rumen of LL dairy 
goats could be a key factor contributing to their impaired lactation. Moreover, the increased activity of 
hydrogenotrophic methanogenesis may further negatively impact their lactation phenotype. Abbreviations: 
Pr, propionate; Bu, butyrate; Ac, acetate; Nic, nicotinate; BHBA, β-hydroxybutyrate; Glc, glucose; NAM, 
nicotinamide; PB14, Prevotella bryantii B14
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significant positive correlation with lactation phenotypes and the concentrations of 
VFAs in the rumen [23]. FMC is likely a core functional community that regulates the 
lactation performance of dairy livestock, prompting us to attempt to assemble FMC 
in vitro to better support research on the lactation performance of dairy livestock.

GPR109A, acting as the receptor for nicotinate, is highly expressed in the mammary 
gland [41]. Its activation induces the dissociation of the Gαi subunit [44], whereby the 
Gαi subunit inhibits the activity of adenylate cyclase, thereby reducing the production 
of cAMP and subsequently activating the mTORC1 signaling pathway [45, 46]. How-
ever, based on nicotinate kinetics in goats, NAM is likely the primary circulating form 
in the circulatory system of dairy goats [40], and the interaction between GPR109A 
and NAM remains unclear. Although we confirmed that GPR109A serves as a criti-
cal receptor mediating NAM-induced activation of mTORC1 by disrupting GPR109A 
expression, the specific regulatory mechanisms still require further elucidation. Addi-
tionally, to explain that the dosage of NAM treatment may exert markedly different 
effects on mTOR, higher concentrations of NAM (> 5 mM) can phosphorylate TSC2 
(tuberin) in an AMPK-dependent manner or directly disrupt the interaction between 
mTORC1 and Raptor, thereby inhibiting mTORC1 [47, 48]. However, treatment with 
higher concentrations of NAM does not accurately reflect the changes in NAM con-
centration within the circulatory system (typically at the μM level [49–51]) and its 
impact on mTORC1. Therefore, we used a 0.5-mM NAM treatment for 4 h on MAC-T 
to mimic endogenous NAM effects, which activated the mTORC1 signaling pathway. 
Although a reasonable concentration of NAM was selected to replicate its endoge-
nous effects on milk fat synthesis, the increase in NAM concentration mediated by 
the rumen microbiota may provide sustained and stable stimulation to the mammary 
gland. Therefore, further validation of these molecular findings in the mammary tis-
sues of dairy livestock is crucial to ensure their applicability and accuracy.

Our study had several limitations. In the trial evaluating the effects of PB14 on lacta-
tional phenotypes in dairy goats, local temperature fluctuations may have interfered with 
feed intake in dairy goats [52]. Concurrently, constrained by biological characteristics 
of the caprine lactation cycle, this study employed a late-lactation model to assess the 
effects of PB14 on milk production performance. These factors may have compromised 
the objectivity in evaluating the lactogenic efficacy of PB14 [53]. Thus, future studies will 
employ a more stable mid-lactation model [22] to investigate the effects of PB14 on lac-
tation phenotypes. Furthermore, we validated the NAM–GPR109A–mTORC1 signaling 
cascade solely in the MAC-T cell line, which may not fully capture the overall regula-
tory context of the mammary gland, including its structural organization and immune 
microenvironment. Therefore, further in-depth studies and validation of this mecha-
nism are urgently needed in the dairy goat. Thirdly, although in vitro studies confirmed 
that the nicotinate-producing function of PB14 serves as a pivotal node connecting the 
rumen-blood-mammary gland axis, the functionality of PB14 may not fully represent 
the effects of the FMC. This is because the genotypic diversity introduced by complex 
microbial ecosystems can enhance metabolic adaptability and ecosystem functionality 
[54], thereby reflecting outcomes that are not observable within single-strain culturing 
systems. Consequently, we recommend the construction of anaerobic culturing systems 
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for FMC to thoroughly investigate interspecies interactions and regulatory mechanisms 
at the cellular level, thereby providing foundational data for FMC industrial applications.

Conclusions
Our study provides the most direct evidence to date supporting the regulation of milk fat 
synthesis by the rumen-blood-mammary gland metabolic axis in dairy livestock. Nota-
bly, we established a causal link between nicotinate synthesized by PB14, converted to its 
active form NAM, and the activation of mTORC1 in the mammary gland, thereby mod-
ulating milk fat synthesis. Crucially, we demonstrated that the regulatory effect of NAM 
on mammary gland mTORC1 at physiological concentrations is fundamentally distinct 
from that at pharmacological doses. Furthermore, we emphasize that the abundance of 
Prevotella spp. is as vital as host functions and represents an indispensable functional 
component within the rumen of dairy livestock. Consequently, the abundance of Prevo-
tella spp. can be incorporated as a critical marker-assisted selection trait in breeding 
programs.

Methods
Additional methodological details, including the feeding regimen for dairy goats, prepa-
ration of the PB14 suspension, VFAs quantification, microbial DNA extraction, library 
construction and metagenomic sequencing, as well as the absolute quantification of 
microbial copy numbers, were comprehensively documented in the Additional file  2: 
Supplementary Methods.

Experimental setup, animal measurements, and sampling

A total of 177 healthy mid-lactation Saanen dairy goats (average parity: 2.20 ± 0.48, 
days in milk [DIM]: 121.50 ± 8.05; mean ± standard deviation [SD]) were selected 
from a commercial dairy goat farm. All animals were housed in the same well-ven-
tilated barn and subjected to twice-daily milking sessions at 5:00 and 17:00, fol-
lowed by feeding immediately after each milking. The dietary formulation for the 
dairy goats is detailed in Additional file 15: Table S14; the detailed feeding protocol 
is provided in the Additional file  2: Supplementary Methods. Milk yield data were 
collected daily during the first and fourth weeks of September 2022. The mean daily 
milk yield for each goat was calculated based on the average of the 2 weeks of daily 
measurements. On the final sampling day, milk was collected before each milking 
at a morning-to-evening volumetric ratio of 3:2. Milk components, including milk 
protein, milk fat, lactose, total solid, and SCC, were quantified using a milk compo-
sition analyzer (FOSS-4000, FOSS Electric A/S, Hillerød, Denmark) as outlined in 
Additional file 8: Table S7. Urea nitrogen levels in milk were measured using a urea 
nitrogen assay kit (ml016913, Mlbio, Shanghai, China). Previous studies indicated 
an inverse relationship between milk yield and milk fat percentage in dairy livestock 
[55]. Accordingly, goats were grouped based on their average milk yield and milk 
fat percentage, defined as mean ± 0.5 × SD, resulting in the selection of 10 HH and 
10 LL individuals (Fig.  2A and Additional file  8: Table  S7). MFY was calculated as 
the product of average milk yield (kg/day) and milk fat (%). Using G*Power [56], 
the effect size for milk yield was calculated based on intergroup means and SDs, 
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followed by estimation of statistical power using a two-tailed independent-samples 
t-test at α = 0.05. This analytical procedure was identically applied to milk fat per-
centage data. Calculations revealed that statistical power > 99% for both milk yield 
and milk fat percentage. Following classification, HH and LL goats were individually 
housed and fed, with feed intake recorded over a period of 3 days. The average daily 
feed intake for each goat was determined as the mean of the 3-day intake values 
(HH: 2.27 ± 0.29  kg/day; LL: 2.18 ± 0.25  kg/day; mean ± SD). Subsequently, rumen 
digesta samples from HH and LL goats were collected via oral gastric tubing before 
morning feeding. The samples were then used for VFA analysis and the quantifica-
tion of Prevotella copy numbers [57] (see Additional file  2: Supplementary Meth-
ods). Ammonia nitrogen concentration was quantified using an ammonia nitrogen 
assay kit (090080, Huankai Biology, Guangzhou, China). Serum samples from HH 
and LL goats were collected and analyzed for biochemical parameters using an auto-
matic biochemical analyzer (Indiko, Thermo Fisher Scientific, Wilmington, USA).

To construct the GRMGC and goat rumen MAGs database, in addition to 
the HH (n = 10) and LL (n = 10) dairy goats, we collected 103 additional goat 
rumen digesta samples from various breeds via oral gastric tubing. Furthermore, 
we integrated 37 high-quality rumen digesta metagenomic datasets from 4 pub-
lished studies [24–27]. In total, 160 samples were available by 7 September 2022. 
The sample collection comprises seven distinct purebred goat breeds and one 
hybrid breed, differing in age, sex, housing environment, and feeding regimes: 
Saanen dairy goats (n = 100), Shaanbei white cashmere goats (n = 8), Longdong 
black goats (n = 7), Shannan white goats (n = 8), Tibetan cashmere goats (n = 10), 
Xiangdong black goats (n = 6), Hainan black goats (n = 9), and a hybrid popula-
tion derived from Boer goats (father), and Yangtze Delta white goats (mother) 
(n = 12) (Fig.  1A and Additional file  1: Table  S1). All sampling activities were 
conducted between September and November 2022. For the 6  months preced-
ing sampling, donor goats remained healthy and received no probiotics or anti-
biotics. All freshly collected rumen digesta samples were immediately stored 
at − 80 °C prior to total DNA extraction.

To assess the impact of PB14 on milk production performance and rumen fer-
mentation parameters in dairy goats, a total of 10 healthy Guanzhong dairy goats 
in late lactation (parity = 1, DIM = 215.30 ± 3.03  days; mean ± SD) were selected 
from, and housed at, a farm in Fufeng County, Baoji, Shaanxi province (34°22′N, 
107°53′E). The goats were randomly divided into a control group (CON) and a 
PB14 gavage group (PB), with each group housed in separate well-ventilated pens. 
The experiment lasted 17  days, during which the average daily minimum and 
maximum temperatures were 21.71  °C and 31.06  °C, respectively. Both the CON 
and PB groups of dairy goats underwent an initial 7-day adaptation period fol-
lowed by a 10-day treatment period. Throughout the entire experiment, goats in 
both groups had ad libitum access to water, and average feed intake and milk yield 
were recorded daily. No treatments were administered to either group during 
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the adaptation period. During the treatment period, the control group (CON) 
received 20 mL of sterile physiological saline via gavage, while the PB group was 
administered 20 mL of PB14 suspension (1 × 1011 CFU/L); detailed PB14 suspen-
sion preparation methods were provided in the Additional file 2: Supplementary 
Methods. Milk samples were collected before morning and afternoon milking on 
the 7th day of the adaptation period and on the 5th and 10th days of the treat-
ment period. The morning and afternoon samples were mixed at a 3:2 (v/v) ratio 
and analyzed for composition using a FOSS-4000 analyzer (FOSS Electric A/S, 
Hillerød, Denmark). Rumen fluid was sampled before the first morning feeding 
(day 1) and 24  h after the final gavage (day 11). Each sample was divided into 
four aliquots for analysis of VFAs, nicotinate concentrations, and quantification 
of PB14 [58] and methanogenic archaea [59] copy numbers. Detailed quantifica-
tion methods were described in the Additional file  2: Supplementary Methods, 
with primer sequences listed in Additional file 16: Table S15.

Construction and evaluation of the goat rumen microbial gene catalog

DNA was extracted from each sample using the mini-bead beater method described 
by Yu and Morrison [60]. The extracted DNA was then used for library construc-
tion. The newly collected rumen digesta samples in this study consisted of a total 
of 2.83  Tb of raw metagenomic sequencing data, averaging 23.04  Gb per sample. 
Additionally, the NCBI-SRA database provided 848.22  Gb of high-quality rumen 
metagenome data, with an average of 22.92  Gb per sample (Additional file  3: 
Table  S2). Illumina raw sequencing data were processed using fastp [61] (v0.20.0; 
parameters: –cut_by_quality3 -W 4 -M 20 -n 5 -c -l 50 -w 3) to remove adapters 
and low-quality reads (length < 50  bp, quality score < 20, and containing N bases). 
To reduce DNA contamination in the sequencing data, the closest goat genomes, 
feed ingredient genomes (primarily corresponding to plants included in goat feed), 
and human genomes were aligned to the raw reads with BWA-MEM [62] (v0.7.17; 
parameters: -t 20 -M -R “@RG\tID:${sampleid}\tLB:${sampleid}\tPL:UNKNOWN\
tSM:${sampleid}”). After quality control and removal of DNA contamination, the 
123 rumen digesta samples newly collected here retained 2.25  Tb of high-quality 
metagenomic sequencing data, averaging 18.32 Gb per sample, while metagenomic 
datasets from the NCBI-SRA database retained 773.14 Gb of high-quality sequenc-
ing data, averaging 20.90 Gb per sample (Additional file 3: Table S2). Subsequently, 
high-quality sequences from each sample were individually assembled using metaS-
PAdes [63] (v3.15.5; parameters: –only-assembler -m 400 -t 40). Following assembly, 
contigs < 500 bp were removed with custom scripts. To optimize sequence utilization 
and facilitate the identification of rare genes within the goat rumen microbiome, 
high-quality reads were aligned to their own sample’s contigs with Bowtie 2 [64] 
(v2.5.1; parameters: -p 8) to obtain unassembled reads for each sample. The result-
ing unmapped reads were pooled and co-assembled with MEGAHIT [65] (v1.2.9; 
parameters: –min-contig-len 500 -t 40). The individual and joint assemblies yielded 
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a total of 179,200,950 contigs longer than 500 bp, with an average N50 of 1414.60 bp, 
an average contig length of 1169.12 bp, and a total length of 202.93 × 10⁹ bp (Addi-
tional file 4: Table S3).

ORFs in the assembled contigs were predicted using Prodigal [66] (v2.6.3; parameters: 
-p meta), resulting in a total of 304,630,910 ORFs. Complete ORFs accounted for 26.62%, 
with an average length of 601.16 bp (Additional file 4: Table S3). After removing ORFs 
shorter than 100  bp, the remaining ORFs were clustered using CD-HIT [67] (v4.8.1; 
parameters: -n 9 -g 1 -G 0 -m 0 -d 0 -as 0.9 -c 0.95), generating the GRMGC, which con-
tains 73,875,589 NR predicted genes (Additional file 5: Table S4). EMBOSS Transeq [68] 
(v6.6.0.0; parameters: -frame 6) was employed to translate the representative sequences 
in the GRMGC into protein sequences for subsequent taxonomic and functional anno-
tation. Gene abundance was determined by aligning the high-quality reads from each 
sample with NR predicted genes at 95% sequence identity using SOAPaligner/Soap2 [69] 
(v2.21; parameters: -r 1 -l 35 -M 4 -p 6 -v 20 -c 0.95 -m 400—× 600).

To evaluate the completeness and representativeness of the GRMGC, we clustered 
the rumen microbial gene catalogs constructed by Xie et  al. [26] and Li et  al. [28] 
together with the GRMGC using the large-scale fast clustering tool MMseqs2 [70] 
(v15.6f452; parameters: easy-linclust –min-seq-id 0.95 -c 0.8 -e 0.001 –threads 40) 
to remove redundant genes between catalogs. Additionally, we assessed the protein 
sequence overlap between GRMGC and the rumen microbial NR protein database 
published by Stewart et  al. [29] using MMseqs2 [70]. To evaluate the coverage of 
GRMGC beyond the cohorts included in this study, rumen microbiome metagenomic 
sequencing data from three goat studies [4, 30, 31] and two sheep studies [32, 33] 
were employed. After removing DNA contamination, the external metagenomes were 
aligned to the GRMGC using BWA-MEM (v0.7.17) [62], and alignment rates were 
calculated using the “flagstat” function in SAMTOOLS (v1.17) [71].

Taxonomic and functional annotation of NR genes

NR predicted protein sequences were aligned to the NCBI-NR database (October 
2022) using DIAMOND [72] (v2.1.8.162) with an e-value threshold of ≤ 1e-5 to 
obtain taxonomic assignments. Predicted proteins without DIAMOND hits were 
classified as unknown. KOs were assigned to NR predicted proteins with Kofam-
Scan [73] (v1.1.0; parameters: –cpu 20 -E 1e-5 -f mapper) by querying the KOfam 
database with HMMER. KOfam is a customized hidden Markov model (HMM) 
database for the KOs. In total, 32.12% (23,730,931) of NR predicted proteins 
mapped to 12,791 KOs and 17.80% (13,151,594) to 464 KEGG level 3 pathways. 
Functional annotation against eggNOG was performed with eggnog-mapper [74] 
(v2.1.11; parameters: -d bact, arch, viruses, euk -m diamond –cpu 50 –evalue 1e-5) 
by aligning the NR predicted protein sequences to the eggNOG 5.0.2 [75] database. 
A total of 49.44% (36,525,191) of the NR predicted proteins were annotated to 4650 
eggNOG orthologous groups. CAZyme annotations were performed using HMMER 
[76] (v3.3.2) to match protein sequences against the CAZyme family HMM library 
downloaded from the CAZy database [77] (v.8, http://​www.​cazy.​org/). Overall, 
3.88% (2,869,237) of NR predicted proteins were assigned to 637 CAZy families 
(Additional file 6: Table S5).

http://www.cazy.org/
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Metagenomic binning and genome quality assessment

To deepen the understanding of the goat rumen microbial community, a genomic 
binning approach was employed. The metaWRAP pipeline [78], comprising multi-
ple functional modules designed for analyzing MAGs, was utilized to reconstruct 
the goat rumen microbial draft genomes. For contigs assembled from individual 
samples, the metaWRAP binning module [78] (v1.3.2; parameters: -l 500 –uni-
versal –metabat2 –maxbin2 –concoct –interleaved) was applied using three dis-
tinct binning algorithms to generate MAGs. For the 160-sample co-assembly, only 
MetaBAT2 was run [78] (v2.12.1; parameters: -l 1500 –universal –metabat2 –
interleaved) to reduce memory demand. Binning of single-sample contigs yielded 
a total of 115,382 MAGs, while co-assembly binning contributed an additional 
2810 MAGs (Additional file  10: Table  S9). Subsequently, the metaWRAP bin_
refinement module [78] (v 1.3.2; parameters: -t 40 -m 400 -c 50—× 10 –quick) 
was employed to further refine the assembled MAGs. MAG completeness and 
contamination were evaluated with CheckM [79] (v1.0.12; parameters: lineage_wf 
-t 128 -x fa –tab_table). MAGs with completeness greater than 50% and contam-
ination less than 10% were retained. MAGs with completeness between 50 and 
90% were classified as medium quality, while those with completeness exceeding 
90% and contamination below 5% were designated as high quality [80]. The qual-
ity score of each MAG was calculated as completeness − 5 × contamination. Sub-
sequently, dRep [81] (v3.2.2; parameters: -p 72 –ignoreGenomeQuality -pa 0.95 
-sa 0.99 -cm larger) was utilized to dereplicate the quality-filtered MAGs at a 99% 
ANI threshold, resulting in 5514 NR MAGs. These MAGs ranged in size from 0.34 
to 9.98 Mb, with N50 lengths ranging from 0.73 to 871.56 kb, an average of 1846 
ORFs per MAG, and an average GC% content of 49.82% (Additional file  2: Fig. 
S24A, B and Additional file  11: Table  S10). Similarly, dRep [81] (v3.2.2; param-
eters: -p 72 –ignoreGenomeQuality -pa 0.90 -sa 0.95 -cm larger) was employed 
at a 95% ANI threshold to dereplicate the MAGs and identify SGBs. SGBs lacking 
species-level taxonomy were designated unknown SGBs (uSGBs) [82]. In accord-
ance with the Minimum Information about a Metagenome-Assembled Genome 
(MIMAG) standards [80] and tRNA and rRNA genes within the 5514 MAGs were 
identified using tRNAscan-SE [83] (v2.0.12; parameters: -B –thread 20) and Bar-
rnap (v0.9; parameters: –kingdom bac –threads 20 –reject 0.01 –evalue 1e-03; 
https://​github.​com/​tseem​ann/​barrn​ap), respectively. The abundance of each 
MAG within individual samples was assessed using the metaWRAP “quant_bins” 
[78], where Salmon [84] (v1.9) was utilized to create a reference collection from 
all MAG contigs. High-quality reads from each sample were then aligned to this 
reference set to determine the length-weighted average abundance of MAGs 
within each sample, subsequently represented as TPM values.

Phylogenetic, taxonomic, and functional analyses of MAGs

To elucidate the phylogenetic relationships among the MAGs, ORFs for each MAG 
were predicted and translated into protein sequences with Prodigal [66] (v2.6.3; param-
eters: -p single). The resulting MAG-specific protein sequences were processed using 
PhyloPhlAn [85] (v3.0.67; parameters: -t a -d phylophlan –diversity low –nproc 60) 

https://github.com/tseemann/barrnap
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to generate a maximum likelihood phylogenetic tree, which was subsequently visual-
ized with iTOL [86]. GTDB-tk “classify” [87] (v2.3.0; parameters: –cpus 48 –exten-
sion fa –skip_ani_screen) was run to detect bacterial and archaeal marker genes in the 
5514 MAGs and assign taxonomy. Detected marker genes were phylogenetically placed 
against the GTDB r214 reference genome database for precise taxonomic assignment. 
KOs assignments for all MAG predicted protein sequences were similarly conducted 
using KofamScan [73]. Subsequently, BLASTP (v2.14.1 +) was utilized to screen protein 
sequences against the HydDB database, applying an e-value cutoff of ≤ 1e-50, coverage 
greater than 90%, and homology exceeding 50%, to determine the capacity of individ-
ual MAG-encoded protein sequences to encode catalytic subunits for three classes of 
hydrogenases (FeFe −, NiFe −, and Fe −) (Additional file 12: Table S11) [36].

Rumen digesta non‑targeted metabolome measurements using LC–MS/MS

For the HH and LL dairy goats, rumen digesta samples frozen at − 80  °C were 
thawed at 4 °C. Subsequently, 200 μL (± 1 μL) of the thawed sample was aliquoted 
and combined with 200 μL of internal standard extraction solution (acetonitrile-
methanol = 1:4, v/v) and vortexed for 30  s. The resultant mixture was centrifuged 
at 12,000 rpm for 10 min. Following centrifugation, 200 μL of the supernatant was 
incubated at − 20 °C for 30 min and subsequently subjected to a second centrifuga-
tion at 12,000 rpm under 4 °C for 30 min. Subsequently, 200 μL of the supernatant 
was transferred to a vacuum concentrator for evaporation and drying. The dried 
residue was reconstituted in 150 μL of a 70% methanol aqueous solution, vortex-
mixed for 3 min, and sonicated in an ice-water bath for 10 min. The mixture was 
then centrifuged at 12,000 rpm under 4 °C for 3 min, and 120 μL of the supernatant 
was aliquoted for analysis using a UHPLC-ESI–MS/MS system (UHPLC, ExionLC 
AD; ESI; QTRAP system).

The UHPLC system was configured with the following conditions: chromatographic 
column, Waters ACQUITY UPLC HSS T3 C18 (1.8  µm, 2.1  mm × 100  mm); mobile 
phases, ultrapure water (containing 0.1% formic acid) and acetonitrile (containing 0.1% 
formic acid); column temperature, 40 °C; flow rate, 0.4 mL/min; and injection volume, 2 
μL. MS/MS scans were performed in both positive and negative ionization modes.

The data generated from LC–MS/MS were processed using the Analyst 1.6.3 software 
package [88]. To expand metabolite identification, metabolites were annotated based on 
a proprietary MWDB (Metware Database) as well as public databases including Metlin, 
HMDB, KEGG, and MoNA. Metabolites exhibiting significant differences were iden-
tified based on thresholds of VIP > 1 and P < 0.05. Identified metabolites were initially 
mapped to KEGG pathways, followed by hypergeometric testing to determine signifi-
cantly enriched metabolic pathways.

Culture and genomic annotation of rumen‑derived P. bryantii B14

The rumen-derived PB14 model strain was acquired from Mingzhou Bio (B260991, 
Mingzhou Bio, Ningbo, China). PB14 was revived and cultured following DSMZ pro-
tocols (https://​www.​dsmz.​de/). The PB14 genome assembly was downloaded from 
NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​nucco​re/​NZ_​FOEM0​00000​00). CheckM analysis 

https://www.dsmz.de/
https://www.ncbi.nlm.nih.gov/nuccore/NZ_FOEM00000000
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revealed a genome completeness of 98.1% and contamination of 1.79%, meeting the high-
quality draft genome criteria (> 90% completeness, < 5% contamination) as defined by the 
MIMAG standard [80]. Therefore, this assembly was chosen for downstream analyses. 
ORFs were predicted with Prodigal (v2.6.3) and translated to protein sequences. KEGG 
annotation was performed using KofamScan (v1.1.0) with an e-value cutoff of ≤ 1e-5 to 
evaluate the genomic potential of PB14 for nicotinate biosynthesis.

Measurement of P. bryantii B14 growth activity and its synthesis of nicotinate in vitro

PB14 growth was monitored by inoculating the activated culture into M159 and record-
ing OD600 at regular intervals. To evaluate the in vitro nicotinate-producing capacity of 
PB14, logarithmic-phase cells were enumerated using the plate count technique. Sub-
sequently, 500 μL of PB14 at a concentration of 1 × 10⁸ CFU/mL was inoculated into 
the PB group (n = 3), and 500 μL of heat-inactivated PB14 (100  °C for 10  min) at the 
same concentration was inoculated into the DPB group (n = 3). Cultures were incubated 
anaerobically at 37 °C within an anaerobic workstation (YQX-III, Chuanhong, Shanghai, 
China). After incubation, culture supernatants from PB and DPB groups at 0 h and 24 h 
were harvested by centrifugation at 4000 × g for 10 min, and the supernatants were col-
lected for subsequent analyses. Given that the M159 contains nicotinate and its precur-
sor L-aspartate, concentrations of L-aspartate (F0165-OB, FANKEW, Shanghai, China) 
and nicotinate (F0047-GB, FANKEW, Shanghai, China) in the supernatants of PB and 
DPB subcultures were quantified using ELISA kits according to the manufacturer’s 
instructions.

Evaluation of P. bryantii B14 impact on methane production in artificial rumen 

fermentation system

To evaluate the impact of PB14 on methane production, an artificial rumen fermenta-
tion system following a previously described protocol [35] with minor modifications 
was used. Fresh rumen fluid was collected via cannulation before the morning feeding, 
transferred to anaerobic bags, and incubated at 39.5 °C. All procedures were conducted 
under continuous CO₂ flow. Each anaerobic bottle received 0.6 g of homogenized, dried 
total mixed ration. The rumen fluid was mixed with preheated artificial saliva in a 1:4 
(v/v) ratio, and 60 mL of this mixture was added to the bottles [89]. In the control group 
(CON), bottles received 2 mL of sterilized PB14 supernatant filtered through a 0.22-μm 
membrane. In the PB14 group (PB), bottles were inoculated with 2 mL of active PB14 at 
1 × 10⁸ CFU/mL. Following inoculation, bottles were connected to anaerobic gas collec-
tion bags equipped with three-way valves and incubated in a shaker (JYCD-202–3, JIN-
WENYIQI, Shanghai, China) at 39.5 °C and 60 rpm for 24 h. Gas volume was measured 
using a syringe with a three-way valve after fermentation. Methane concentrations were 
determined using a gas chromatograph (GC-2014C, Shimadzu, Kyoto, Japan) equipped 
with a TDX-1 column (Agilent Technologies Inc., Santa Clara, USA) according to stand-
ard protocols. Total methane production was calculated as gas volume × methane con-
centration [90]. After fermentation, bottles were placed on ice to halt fermentation, 
and broth was collected in duplicate for pH measurement and methanogenic archaea 
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quantification [59]. Detailed methodologies and primer information are provided in the 
Additional file 2: Supplementary Methods and Additional file 16: Table S15.

Culturing and simulating of bovine mammary epithelial cell line

The MAC-T was cultured in DMEM supplemented with 10% fetal bovine serum under 
standard conditions of 37 °C and 5% CO₂. Considering that the half-life of NAM in goats 
is approximately 4 h [40], passaged MAC-T were incubated with NAM at concentrations 
of 0.0, 0.1, 0.5, 1.0, 2.5, and 5.0  mM for 4  h. Following incubation, the cells were stored 
at − 80 °C for subsequent qRT-PCR and Western blot analyses. Nonspecific control small 
interfering RNA (siRNA) and GPR109A-specific siRNA (GenePharma, Shanghai, China) 
were mixed with Lipofectamine 3000 at a 1:1 (v/v) ratio. The mixture was diluted in serum-
free medium and incubated at room temperature for 30  min. Subsequently, the diluted 
siRNA-Lipofectamine complexes were added to MAC-T in six-well plates and incubated 
for 24 h to allow transfection. Transfected MAC-T were then seeded into 12-well plates and 
further incubated with NAM at concentrations of 0.0, 0.1, and 0.5 mM for an additional 4 h. 
The siRNA sequences used were as follows: 5ʹ‐GAA​CGA​GGU​UGA​UCG​AGA​AUC‐3ʹ.

Quantitative real‑time PCR

Total RNA was extracted from MAC-T using the TRIzol reagent (Invitrogen, Carlsbad, 
CA, USA) following the manufacturer’s instructions. The concentration and purity of 
the extracted RNA were measured using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher Scientific, Wilmington, USA). RNA integrity was assessed by agarose gel elec-
trophoresis. Subsequently, reverse transcription was performed using the RevertAid 
First-Strand cDNA Synthesis Kit (Thermo Fisher Scientific, Wilmington, USA) to syn-
thesize cDNA from the total RNA. The qRT-PCR was conducted on a Light Cycler®96 
Real-Time PCR System (Roche, Pleasanton, CA) using ChamQ Universal SYBR qPCR 
Master Mix (Vazyme, Nanjing, China). All primers utilized in this study were designed 
with Oligo 7 software and preliminarily validated using Primer-BLAST. The primers 
were synthesized by Zhongke Yutong Biotechnology (Shaanxi, China), and the primer 
sequences are listed in Additional file 17: Table S16. Relative mRNA expression levels 
were calculated using the comparative Ct method (2−ΔΔCt).

Western blotting

For MAC-T, an appropriate volume of lysis buffer was added, and the cells were incubated at 
room temperature for 5 min. The supernatant was subsequently collected for protein analy-
sis through Western blotting. Protein concentrations were determined using the Omni-Easy™ 
Instant BCA Protein Assay Kit (Epizyme, Shanghai, China) following the manufacturer’s 
instructions. Subsequently, the extracted and quantified protein samples were boiled at 100 °C 
for 15 min and separated by polyacrylamide gel electrophoresis. Proteins were transferred to 
a 0.45-μm nitrocellulose membrane using the sandwich transfer method. The membranes 
were blocked with 5% (w/v) skim milk at room temperature for 1 h. Following blocking, mem-
branes were incubated overnight at 4 °C with the primary antibody. Antibodies against p-S6 
(4858S), S6 (no. 2217S), p-ERK (no. 4370), ERK (no. 4695), p-AMPKɑ (no. 2535), AMPKɑ 
(no. 2532), and p-P38 (no. 9211) were obtained from Cell Signaling Technology (MA, USA). 
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GPR109A (bs-10079R) was obtained from Bioss (Beijing, China). β-Actin (mo. 66,009–1-Ig) 
and P38 (14,064–1-AP) were purchased from Proteintech (Wuhan, China). After primary 
antibody incubation, membranes were washed 3 × 5  min with 1 × TBST (T1081, Solarbio, 
Beijing, China). Subsequently, the membranes were incubated with HRP-conjugated second-
ary antibodies at room temperature for 1 h. Protein bands were visualized using the Omni-
ECL™ Micro Chemiluminescence Kit (Epizyme, Shanghai, China). β-Actin was used as the 
loading control. All blots and gels were derived from the same experiment and processed in 
parallel.

Statistical analysis

All figures involved in this study were generated in R (v4.3.1) within the RStudio IDE 
and refined in Adobe Illustrator (v2021). For non-omic data, between-group differ-
ences were evaluated with two-tailed unpaired Student’s t-test (two groups) or one-
way ANOVA (≥ three groups). When the ANOVA result was significant, pairwise 
comparisons were performed with the least significant difference test in SPSS (version 
20.0, SPSS, Chicago, IL, USA). Differences were considered statistically significant at 
P < 0.05. Bray–Curtis distance-based ordination analyses were conducted between the 
HH and LL groups at the species, KOs, KEGG module, and metabolite levels. PER-
MANOVA and ANOSIM tests with 999 permutations were employed using the vegan 
package [91] in R to evaluate intergroup differences, followed by PCoA for visualiza-
tion. The Wilcoxon rank-sum test was utilized to identify significant differences in 
the relative abundance of various taxa between groups across different taxonomic 
levels. LEfSe was utilized to compare species-level differences in the rumen micro-
biota of HH and LL dairy goats. The nonparametric factorial Kruskal–Wallis sum-
rank test was used to identify species with significant abundance differences, and the 
Wilcoxon rank-sum test was applied to assess the consistency of differential species 
across subgroups between different groups. Subsequently, linear discriminant analy-
sis (LDA) was used to evaluate the impact of each taxon abundance on the differential 
effect. A significant increase in microbial species abundance was defined as an LDA 
score (log10) > 2.0 and a P < 0.05. LEfSe was also utilized to compare the abundance 
of microbial metabolic pathways and modules between the two groups, with differ-
ences considered statistically significant at LDA scores > 2 and P < 0.05. Metabolites 
with VIP ≥ 1 and P < 0.05 were regarded as exhibiting significant differential relative 
abundance.
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